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Abstract

An Analytic theory for the evolution of high altitude satellite orbits is
developed in this note. The distinctive feature of the theory lies in the
double averaging of the differential equations--once over the period of the
orbit, and secondly over the period of the moon. This technique is called
"intermediate averaging" to distinguish it fram the conventional doubly
averaged theories, and to denote the time scales inherent in the averaging
technique.
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I. INTRODUCTION

An analytic theory for the evolution of high altitude satellite orbits is
developed in this note. The distinctive feature cof the theory lies in the
double averaging of the differential equations--once over the period of the

orbit, and secondly over the period of the moon. This technique is called

"intermediate averaging" to distinguish it from the conventional doubly
averaged theories, and to denote the time scales inherent in the averaging

technique.

II. BACKGROUND

Analytical theories for the evolution of orbits of artificial satellites
of the earth have been developed from the early days of satellites. The aim

has been to provide computationally efficient formulations that could be used

both for-orbital *analysis  and vrbitecestimation. - (A -.comprehensive-kibliography-.« - -«
is provided by Dallas: Ref. 1). The alternate technique is the accurate,
relatively compact but computationally expensive method of direct numerical
integration of the differential equations for orbital evolution.
By far the most common technique that has been applied in the develop-
ment of analytical theories is that of averaging over the time scales in-
herent in the differential equations. An adequate exposition of the method
of averages is provided by lLorell et al. (Ref. 2). The characteristic features
of orbital theories developed using the technique are:
1. They are expressed as analytical formulae for the rates of change of

mean elements.
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2. The theories are generally either to Zirst or to second order in the
expansion of the geopotential (higher order theories do exist and are
employed occasionally).

3. The first averaging is over the mean anomaly of the satellite which
is the fastest periodic variable in the system, with the necessary
short-periodic terms also being formulated.

4. The second averaging is over the period of the argument of perigee
which is typically the second fastest variable, at least for low
altitude orbits; and the necessary long-periodic terms are also
derived.

A complete theory would then consist of the doubly averaged secular rates of
change of the mean elements, along with the long-periodic and the short-

periQdie terms. . |, ., |
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III. THE SYSTEM OF EQUATIONS

The well-known Gauss form of the variational equations in the Keplerian
elements of the orbit are used in this paper to develop an alternate theory

for high altitude satellite orbits. The equations are as follows:

b
g&a a E 3 E
at 2; (u) [eFl sin v + F, r]
DA T L g
dt ae ‘u 2 7 2ae dt
dQ r
e T T ] 07 i) F3 sin (w + v)
ar

)
at = 7T;ST F3 cos (w + v)
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g%-a % (ﬁ) [-F1 cos Vv + F2 sin v(1 + %)] - (cos I) %%
and
, g%-- n=- V%E;T Fl = es[(cos I) %% + g%] |
i ‘ where a = the semi-major axis |
; e = the eccentricity
. I = the inclination of the plane of the orbit to the equator

Q = the right ascension of the ascending node of the orbit i
w = the argument of perigee of the orbit
, M = the mean anomaly of the orbit
; e=1- e2
p = ae
p = the gravitational constant of the earth
r = the geocentric radial distance to the satellite
v = the true anomaly of the satellite
n = the mean motion
F., F,, F_ = the components of the perturbing force along the instan-

taneous radial, transverse and normal directions to the

satellite orbit.

Certain features of the above equations should be noticed. Firstly, the
Gauss form has been altered slightly in the equations for e, w and M in order
to take advantage of commonality of terms. Secondly, the differential equa-
tions are linear in the perturbing forces. Thirdly, singularities at e = 0

or I = 0 exist; these will be commented on later.
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IV. THE PERTURBING FORCES

The perturbations considered here result from the zonal harmonic terms in
the geopotential and the point mass gravitational effects of the sun and the

moon. The perturbing force due to the zonal harmonics can be written as

uJ R n

F -t «1% [(n + 1)P ; - P' sin I cos u ; - P' cos I 3 ]

n t2 r n r n t n n
where n = the degree of the zonal harmonic
Jn = the zonal harmonic coefficient
Re = the equatorial radius of the earth
Pn = the n-th order Legendre polynomial in the argument (sin §)
= the geocentric latitude of the satellite
d
Vg e
pn d(sin §) pn
;;,':;. 35 = "the'‘iftistantéotis "uhit: vectors-alcng. the radial,.transverse, and

normal directions in orbit.
The perturbing force due to a third body (the moon or the sun) can be
written as

->
]

¥ - r .q o ‘
F =l Pq u + Pq+l u

fh&
q 2 Y
Ty k

the order of the term in the Lengendre polynomial expansion of the

where g
perturbing force

the gravitational constant of the k-th body

=
[}

the geocentric distance to the k-th body

2]
]

the g-th order Lengendre polynomial in the argument [ = (Gr. Kk)

o
"

the instantaneous geocentric unit vector to the third body.

£+
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Geopotential zonal harmonic terms up to order 4 only will be included in
the theory. Only the first term in the expansion of the third body perturba-

tion will be considered. Neglected terms are at least an order of magnitude

smaller, for satellites in half-synchronous orbits, and at least a factor of

4 smaller for synchronous satellites. Atmospheric drag is neglected in this

theory.

P —

V. THE SINGLY AVERAGED EQUATIONS

The first step in developing an analytical theory is to average the dif

ferential equations over the fastest variable on the right hand side of the
equations, which is the mean anomaly of the satellite. A considerable body

of results already exists for this step and we will adopt the results of Liu

A SR s

(Ref. 3) for the singly averaged equations due to the geopotential. Liu
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tabulates both the averaged rates and the short periodic terms, the lattér® °
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being computed only to order Jz.

The third-body perturbations must also be averaged over the period of
the satellite. The relevant results for the averaged effects are taken from
earlier work (Ref. 4) of an author of this note. The short-periodic terms
due to the third body were, however, not derived in Ref. 4, and hence were
developed for this note. They are tabulated in Appendix 1 along with the

singly averaged rates of the elements due to the third body.

VI. INTERMEDIATE AVERAGING

Baula R, A, -

The singly averaged equations due to the geopotential show a periodic

dependence on the argument of perigee. However, the rate of change of the
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argument of perigee in high altitude orbits is less than 1 deg/day. Thus,
the period is of the order of a year or larger.

The singly averaged equations due to the third body exhibit dependence
on the position of the third body, and hence on its period. And, for the
moon, the period is 29 days. Hence, the fastest variable left in the singly
averaged equations is the mean anomaly of the moon. Mathematically,

dz

<=—=> = EGQE. Jn) o fT(EJ MT)

dt

where < >

fs

£

]

singly averaged rates
terms due to the geopotential
terms due to the third body

the mean anomaly of the third body

) . » 2

T
z = any element of the satellite orbit in the set z.

e
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The next step in averaging is
<<Q§->>=f(z.J)+-1—- fTMf(z,M)dt
dt G n ™ Yo T T
where Ty is the moon's period. Neither the geopotential terms nor the third
body terms due to the sun are affected by this step of averaging. But the
mean anomaly of the moon is averaged out of the equations. The rates aver-
aged over the intermediate period for the moon are tabulated in Appendix 2.
The theory would not be complete without the intermediate periodic
terms, whose basic period is that of the moon. These terms have been derived

and are also given in Appendix 2.

VII. PROBLEM OF SINGULARITIES

The original differential equations are singular at the values e = 0

and I = 0. These singularities do carry over into the theory developed here.
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As the eccentricity goes to zero, the perigee becomes ill-defined. Hence,

the short-periodic correct;ons in the mean anomaly and in the argument of
perigee become large. However, these two corrections are of nearly equal mag-
nitude and oppcsite in sign. Thus, the position of the satellite in the orbit
as defined by w + M does not exhibit any singularity. Unless the eccentricity
becomes so small that the precision of computation affects results (an un-
likely case), the theory remains valid.

As the inclination goes to zero, the line of nodes, and hence the value
of Q, become ill-defined. The theory does exhibit this singularity in the
fecular terms. And again, the change in the value of Q is nearly equal and
opposite in sign to that of w, the argument of perigee. Thus the position
of perigee can be defined using the value of (2 + w). Another solution is
also possible: the reference plane can be changed from the equator to, say,
the ecliptic, or preferably, a plane containing the earth's polar axis. Very
little needs to be changed in the theory to accommodate a plane change.

Finally, the classic problem of singularity at critical inclination does
not exist in this theory as no averaging is carried out over the period of the

argument of perigee.

VIII. CONCLUSION

A theory for high altitude orbits has been developed using the concept
of intermediate averaging. The final theory consists of the following addi-
tive, separable parts:

1) The averaged rates of change of the orbital elements due to the geo-

potential (intermediate averaging leaves the singly averaged expres-

sions unchanged);




2)

3)
4)

5)

6)
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The short periodics due to the geopotential;

The intermediate ayeraged rates due to the moon;

The intermediate periodic terms due to the moon;

The averaged rates due to the sun (intermediate averaging leaves the
singly averaged expressions unchanged);

The short periodic terms due to the sun and the moon.

The theory is being implemented in an analytic orbit determination program

called ANODE (Ref. 5) for the Millstone Hill Radar.
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APPENDIX 1
SINGLY AVERAGED RATES AND SHORT PERIODICS DUE TO THIRD BODY
The singly averaged rates of change of the orbital elements of a satellite
due to the point mass perturbations of a third body are recorded in this part
of the appendix. The theory is restricted to the first term in the Lengendre
polynomial expansion of the perturbing force due to the third body.
da
— ==
5 ki
dl 3 A :
<dt> - 55 [(5 42)5163 cos w 55263 sin w]
ae 3A 1 :
——— o — -
k <dt 3 55 T [(5 46)5163 sin w + e£2€3 cos w]
de,. 15 Xy
; e T MEiahy

L. N S 2 _ 2 da,
3 <dt> - Ac (451 52 1) cos I <dt>
b
i daMm oA 2- 202 2
5 <dt n> 2 [8 + 12e + 15e 3(1 + 12e + 22e )El 21552]
‘s e an du,
g €“(cos I <dt> + <dt>)
&
b u
|
where A= n(~—k') (a_)3
: HE s

n = the mean motion of satellite
M = gravitational constants of k-th body and the earth
a = semi-major axis of satellite orbit
r, = geocentric distance to third body
i : I = inclination of the satellite orbit to equator
e = eccentricity of satellite orbit
2

E=1-e¢e

w = argument of perigee of satellite orbit

10

i pi= oo § T i
PO R T B i R 2 Wm0, i




El' F,z, 53 = projections of the geocentric unit vector to the third body

-> ->
on the satellite orbital axes “n' unit normal, up, to

->
perigee, and GQ' normal to u_ in the orbit plane

P

M = mean anomaly of satellite.

The short-periodic perturbations due to a third body are tabulated below.
2

Al __1_}_ 5 sin 2E (e g
AIp 3 = E,’ [5153 cos w( 2 e sin E + Y + 3 sin 2E e~ sin E
-E—sin3r::)+e‘,££ sinm(-s—ecosE+lo ZE:+Szi 2E
12 1>3 2 - B g
—9—-cos3E)+el’££ cosm(s—ecosl-:-l-cos2E—-e—2 2E
' 12 273 4 P 3
o os 3E) - € E.& sinm(-ssinz-lsin22+e— in 3E)]
{ 32 253 2 2 13 sin
4
| AR -3A———1—-——[ex’£€ cosw(égcosE--l-COSZE-e—z-coszz
o A i 1°3 4 4 4
£ € sin I
i
3 e E 11
: + iz coe 3E) + \5153 sin w(-;;—' e sin E - e3 sin E + 21- sin 2E
- | e2 e X S5e 1
+ -2— sin 2E - 13 sin 3E) + € 5253 sin w(4—- cos E - 7 cos 2E
3 2
e e e . ]
=% cos 2E + 13 cos 3E) + 65253 cos w( 2 sin E G sin 2E
e p
+ 12 sin 3E)]
€ bRt . 8.2 2.5 1
Aep ol (Aap) e e”(g, €,)(3 @ cos E - 7 cos 2E
1
: . e 1 .
| - 2 cos 2E + 13 °os 3E) + 5152(5 sin 2E ~ 2e sin E - 7 sin 2E)
E 1 Se2 1 e2 e
' - eEliz(E sin E + "5 sin E + 3 sin 3E =~ 12 sin 3E - 5 sin 2E)]
‘
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| %
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ot sin 2E) + 3¢ (52

3 3
- 2e sin E) + 2

2
- El)(e cos E -

where E is the eccentric anomaly of the satellite, and § =

Aw_ = - cos I(AQ ) + 2 55 (6 sin E - £ sin 2E) (1 - 3£2)
P P n e " T 1
Y . e Al 1
- 3¢ €1£2 (=cos E + 2 cos 2E)] + 3; - (CIEZ(Z sin 2E - 2e sin E)
L €6
€ 2 2. ko e . 1 172
+ 3 (52 -El)(2 sin E + 3 sin 2E - Y sin 3E) + 2 € sin 2E])
2
AM = -eklcos I(AQ) + (Aw )] - 2513e(sin E + S sin E - 2 sin 2E
P P P n 4 4
e2 2 11 3 1
+ 36 sin 3E) + 351(- v i3 @ sin E - e sin E + Y sin 2E
e2 e 3 .2 e 1
+ 7 sin 2E - 13 sin 3E) + 3 Eze(- 3 sin E - 3 sin 2E
+ S sin 3E) + 6§_¢ e“(és E - S os 2E - Ei os 2E
6 e il Tl - " ik
e
+ 12 cos 3E)
and
] 2an, 4, .2 .
7 Aap = 85 2 [ee (3£2 - 1)(-cos E + 2 °os 2E) + 3e£1§2(6 sin E
3

cos 2E »
2 ) + 35152(3 sin 2E

e;lgz sin 2E]

1l + e2.
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APPENDIX 2

INTERMEDIATE AVERAGING OF THE PERTURBATIONS DUE TO THE MOON

This part of the appendix records the intermediate averaged perturbations

of a satellite orbit due to the point mass effect of the moon.

<<§%>> = -% 2: B sin Jk cos Jk [(5 - 4€) cos w sin APk
- € sin w cos APk]

<<§%>> = -% i; sig I sin Jk cos Jk [(5 - 4€) sin w sin APk
+ € cos w cos APk]

<<%%>> = %2 nBeeH sin 2APk sin2 Jk

<<%%>> = % nBeslsinz Jk cos ZAPk - 2] -cos I <<%%>>

<<§—M€ - n>> = -eh[cos I <<g%->> + <<g—$>>] + % B[2(8 + 12e + 15e2)
- 2le(sin2 APk + cos2 Jk cos2 APk)
- 3(1 + 12e + 22e2)(cos2 Apk + c032 Jk sin2 APk)]
and
<<§%>> =0

Intermediate averaging also yields periodic terms with the moon's period.

These are recorded below.

AaI,P =0
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3n B
| ATy o 2 g ((5 - 4¢) cos w x @D- esinwx @1}
: € |
|
1 . ) Qe .
where @ {4 cos APk cos (zmk + 2vk) + 2 sin Jk cos Jk sin APk sin (2mk + 2vk)
°k ®x
+ 12 cos APk cos (2mk + 3vk) + T cos Apk cos (2mk + vk) ‘
I 1
e e . |
- 2— sin APk sin Jk cos Jk sin \)k + ﬁ sin Apk sin Jk cos Jk |
e - |

K. "
sin (ka + 3vk) + — sin Apk sin J

y cos J, sin (24 + vk)}

k

8Y w b s i
2 = {-7 sin AP, cos (24 + 2v,) + 7 cos AP, sin J, cos J, sin (2y + 2v))

k 4 k k k

Sl At it s

e e
N L e {
12 sin Apk cos (2«.:k + 3\ak) =3 sin APk cos (ka o vk) ;
e ek
3 cos Apk sin Jk cos Jk sin vk + 12 cos APk sin Jk cos Jk
ek 5
sin (2mk + 3\:k) + 7 cos Apk sin Jk cos Jk sin (2«:k + vk)} j
3 3n B : j
sin I AQ = = — —/ [(5 - 4¢) sin w x (1) + € cos w x (2] :
I'P 2 % EH e

where @ and @ are as above in AII,P' 1
15 n N1 °k :
AeI,P = - -2--;1—; Bee [-4- sin ZAPk {--ek sin v = 3 sin (2mk + vk) k
1 ®x 1 2 -
L =3 sin 2(:..:k + vk) 5 sin (ka + 3vk)} + ry sin 21\1’k cos Jk
3 e 1 %
{ {ek sin Y "3 sin (2«»k + vk) -3 sin (2mk + ka)
» °k 1 °k
Se - g sin (2(.)k + 3vk)} + 7 cos ZAPk cos Jk {= 3 cos (ka + vk)
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3 = 2 2 “x (2w, + 3v)h
b 2cos(mk-o- vk)-scos wk X
;% Aw -—3-&—38"'[43:"3 - 4 - 5] -cos 1IAQ
I,P 2 nk - =4 ~ I,P
%
g where
; - 1 2 : | 2
E . 3 = {4 cos” AP, sin (2w + 2v,) - 7 sin” AP, cos” J
: i
; . sin (Zmk + 2vk) it sin ZI\Pk cos Jk cos (Zmk + 2vk)
4
. e e
3 k 2 s kK 2 4
4 ] + 2 cos APk sin vk + 12 cos APk sin (Zwk + 3vk)
3
3 . e e
| k 2 " e 2 2 .
+ y) cos APk sin (Zu»k + vk) + 3 sin I\Pk cos Jk sin vk
F - e—k- sin2 AP cos2 J in (2w, + 3v,)
% i3 k k S k k
b % .2 2 e
g “3 sin APk cos Jk sin (Zwk + vk) vy sin 2M’k
ek
cos Jk cos (ka + 3vk) it 2 sin 2M>k cos Jk cos (2mk + vk)
¢l .2 : 1 2 2
4 = {4 sin APk sin (2mk + ka) 2 €os AP, cos Iy
sin (ka + 2vk) + g sin 2M>k cos Jk cos (ka + 2\)k)
e e
v k 2 k ., 2
+ 3 sin APk sin Ve + 12 sin APk sin (2mk + ka)
- e e
k 2 k 2 2
+ 2 sin APk sin (2(.;,t + vk) + 7 cos APk cos Jk sin Y
e e
k 2 2 k 2 2
" 12 cos APk cos Jk sin (2mk + 3vk) % cos APk cos J
Y.

}
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- k
sin (ka + vk) + 24 sin ZAPk cos Jk cos (2wk + 3vk)
e A
+ e sin ZAPk cos Jk cos (2wk + vk)
k k

aM_ = (R9BI-3(1 + 12e + 22¢7) x (3 - 2le x &) + (8 + 12e + 15e2)

©
1
o
7] b
-
5
<

I,P 4 nk ’
x 5] - el’[cos I(AQ. ) + (Aw. )] .
= I,P I,P
and 4
AaI,P = 0.

The only symbols used here but not defined in Appendix 1 are:

=
"

mean motion of moon around earth

3 3/2 3
(uk/u) (a/pk) €

pk = parameter of the orbit of the moon

J, = inclination of the satellite orbit with respect to the moon's orbit

e e

APk = arqgument of perigee of the satellite orbit with respect to the
moon's orbit
W = argument of perigee of the moon measured with respect to the ’

satellite orbit

vk = true anomaly of the moon in its orbit
ek = eccentricity of the orbit of the moon
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